Proportioning the Compressed Air Dryer
Trying to figure out which air dryer capacity is best for you? Here are some factors to consider. Read More…
Air compressors use considerable volumes of energy during a typical work cycle. When you add up all the expenses of operating a facility, any savings can help you boost your bottom line. With air compressors, savings come down to efficiency, which depends on a steady maintenance regimen. The following 13 ways to reduce compressed air costs can help you increase your productivity, boost your earnings and prevent costly repairs and system downtime.
Air compressors use considerable volumes of energy during a typical work cycle. When you add up all the expenses of operating a facility, any savings can help you boost your bottom line. With air compressors, savings come down to efficiency, which depends on a steady maintenance regimen. The following 13 ways to reduce compressed air costs can help you increase your productivity, boost your earnings and prevent costly repairs and system downtime.
One of the easiest ways to lower compressed air costs is to simply turn your compressor off during the hours when you do not need it for any of your applications. To a lot of people, this might seem like a piece of anti-advice. After all, this article is about how to lower compressed air costs and be productive with pressurized air. How would shutting off the compressor help you achieve that goal? The thing is, a lot of people keep their air compressors idling during off-hours, oblivious to the fact that this wastes energy.
Think of it this way. A calendar week consists of 168 hours. Unless you actually use your compressor for processes that run nonstop, 24/7, there is no reason to have your compressor running every hour around the clock. If you only use the compressor for eight, 10 or 12 hours per day, five days per week, you would only need to have the compressor on between 40 and 60 hours in a given week. By cutting the hours of usage down to a typical working week, you could cut your energy consumption down by two-thirds and see significant savings in your subsequent energy bills.
To save money on compressed air costs, it is crucial to eliminate air leaks as much as possible. With air compressors, four-fifths of the energy consumed in a given cycle turns to heat, and only the remaining 19 percent yields air power. When leaks and other performance issues plague the compressor, the overall efficiency drops even lower than that one-fifth level. It is, therefore, essential to inspect your compressed air system for leaks regularly and perform maintenance when necessary.
Most leaks are hard to detect because they are either located in hard-to-access spots or the rupture is not large enough to be audible at armโs length. Depending on the scope and magnitude of your operations, the costs associated with air leaks could spill into the four- or five-figure range each year. The most effective way to reduce leaks is to use an ultrasonic leak detector, which can detect some of the smallest and faintest leaks. With a leak detector, you can spot and remedy leaks in their formative stages before they expand and lead to costlier problems.
Consistently achieve lower compressor energy costs, you must perform anti-leak preventative maintenance regularly. During each inspection, leave no stone unturned in your efforts to prevent the formation of leaks. When it comes to stopping leaks, you must look at various parts of the system, both inside and out, because various problems can result in new leaks.
The first place to check is the pipes, which could be vulnerable to cracks if corrosive elements are allowed to deposit along the length of a given pipe or any of the connecting points. If you spot dust particles or sludge around the piping, clean these spots as thoroughly as possible. To keep each surface in optimal condition, you must keep each pipe clean and dry.
During these inspections, check the filters and drains to ensure that no dust or water accumulates within the system. When mist and dirt get trapped within the compressor and deposit on various internal parts, corrosive gunk can take hold and lead to rust, leaks and system strain.
Even when your system is free of leaks and dirt, you can cut compressed air costs even further by reducing the pressure to the levels required for a given operation. At many facilities, pressure levels are set to maximum thresholds to accommodate the highest-pressure applications. The trouble is, these high-pressure tools and applications might only account for a fraction of the air-powered arsenal.
If you only use high-pressure tools on a part-time basis, consider the possibility of separating those tools from the rest of your equipment. This way, you could run your compressor at medium pressure and save energy through most of your working hours and only increase the pressure when necessary.
If you operate a large facility with multiple compressors, designate each machine for different pressure levels. For example, if you have a range of lower- or medium-pressure applications and only one or two that require high pressure, you could save energy by moving those latter applications to a second compressor specifically designated for such tools.
While condensate drains perform an essential task for your air compressor, the feature itself could be a huge drain on your system if it malfunctions without anyone noticing. On air compressors with timer drains, the drain valve will automatically open each time the timer goes off. If the machine is inactive when this occurs, the timer drain will start up the motor for a short time. Consequently, the drain could often inflict excess wear and tear on your system, just so the drainage process can occur according to schedule.
Further problems could arise if the timer drain gets stuck in the open position. Depending on the placement of your air compressor and the maintenance schedule of your staff, an open drain door might go unnoticed for several weeks or months. That whole time, compressed air will inevitably leak from the system.
To get around this problem, use a zero-loss drain. This way, your system will not be vulnerable to air loss each time you drain the system. By investing in a zero-loss drain, you can save in the long run by preventing the air loss and maintenance costs that will mount over time due to the problems associated with timer drains.
The piping for your air system should be wide enough to allow optimal flow and reduce pressure drop. At the same time, pipes should travel the shortest possible distance to reduce the length of flow, as lengthy flow increases the possibility of pressure drop. With wider pipes, you can cut pressure drop in half because the air can travel faster and retain its original pressure.
Pressure drop is liable to increase when the routing is lengthy and complicated. The longer each flow must travel, the more the pressure drop will be by the time the air reaches its end-point destination. If the pipes are changed in a way that doubles the flow, the pressure drop could increase four-fold. Consequently, your pneumatic processes would be rendered weaker, and the system overall would be less efficient because of tight, lengthy piping.
In recent years, piping has changed on newer compressed air systems. If your current piping was used years earlier on a smaller compressor, consider a new arrangement. If your pipes are smaller than the outlets on your compressor, trade up to a new set of pipes that are wider in diameter. Rather than complicate matters, arrange your pipes so that the flow is wide and as short as possible.
To further cut compressed air operating costs, clean the filters throughout your system on a regular basis. On each unit, the filters play a critical role in the process of the system by capturing dust and dirt from the incoming air. This way, the ambient air is free of air-bound particulates by the time it enters the pressurization chambers. Without the filters, the pressurized air would likely be contaminated and rendered far less effective for pneumatic applications. Moreover, dust and dirt would filter through the air compressor and accumulate on various internal parts.
Depending on the volume and frequency of your operations, each filter should be cleaned on a weekly or monthly basis. Make sure that all dirt is removed before you restart the compressor. Additionally, clean any secondary filters, such as air-line or point-of-use filters situated outside the compressor room or away from the actual units. When a filter appears worn or soiled with residue, change out the filter with a matching replacement.
When it comes to the operation of your system, one thing is certain โ maintenance amounts to savings on compressed air operating costs. To maximize the functions of your air compressor, you must inspect the unit on the outside and inside periodically. In addition to the pipes and filters, you should regularly inspect the motor fans, drip tray, belt and lubrication.
The fans in your air compressor perform a crucial function by lowering the heat inside your unit. To keep the fans fully functional, check the blades for dirt or lint. If one of the blades appears dull or cracked, trade out that fan for a newer duplicate.
Each time you open up the air compressor, inspect the belt to make sure that it has the proper flex to function properly. Give the belt a slight pull to test its elasticity and run your finger across the side for signs of cracks or dullness. When you check the lubrication, make sure that it has the proper color and viscosity. If the machine has been excessively hot, the lubrication could melt and leave the internal parts vulnerable to grinding and rust.
An engineer who knows how to save on compressed air costs will work to eliminate wasteful uses of pressurized air. Regardless of the size of your facility, it is crucial to know the pressurization requirements for the applications at hand and the amount of energy needed to make it all possible. Otherwise, extraneous uses of energy could eat into your profit margin.
In some cases, various minor acts of compressed air usage can amount to wasteful behavior. For example, if pneumatic blowers are used by factory floor personnel to dust off tables and shelves, air power is being consumed for a function that could just as easily be performed with manual brushes.
In other cases, extraneous compressed-air usage can quickly become a costly habit. For example, if air blowers are being used to cool the interior of an industrial facility, you could be faced with soaring energy costs over a function that would be much better achieved with fans or an air conditioning system.
In a compressed air setup, the size and placement of the air receiver is a major determining factor in the overall operating cost of the system. For each successive pressurized air supply, the air receiver functions as a placeholder between the compressor and the system at large. Within the air receiver, the pressure is modulated to suit the demands of the application at hand.
In some factories, technicians place the air receiver before the air dryer. This way, lingering traces of oil and condensate are removed from the process before it reaches the dryer. The downside to this arrangement is that the receiver is forced to hold denser supplies of air. If the demand surpasses the capacity rating, the dryer might get overloaded and increase the dew point pressurization.
The other option is to place the receiver after the dryer. This way, spikes in demand are received with dry air. For protective purposes, the ideal arrangement is to affix the supply side with two receivers. In this arrangement, the first receiver controls condensate dropout while the second handles varying demand levels.
The importance of drying pressurized air is generally a misunderstood concept, even among people who mostly understand how to lower compressed air system costs. Consequently, the systems put in place for this purpose are often inefficient. One of the most frequently asked questions about filters and dryers concerns whether desiccant or refrigerant types are best. The question is usually followed by further inquiries regarding regulators, lubricants and filtration levels.
Before these questions can be answered, the applications of your compressed air system must be taken into account. For example, the level of your drying needs could depend on whether you operate in a humid environment. That said, certain principles apply in all cases. For starters, never allow pressurized air to dry beyond the required level of the application, as doing so will make your operations more costly. The more efficient option is to first use a refrigerant dryer and only apply further drying on an as-needed basis, as determined by the application. To avoid additional pressure drop, limit your use of filters to the bare necessity.
One of the easiest ways to save money on compressed air energy is to pay for a professional tune-up of your air compressors and peripheral parts. When you hire a third-party maintenance technician to come to your facility, that person will likely spot issues that your in-house staff may overlook. Professional maintenance techs have inspected hundreds of different air compressors and know about all the common mistakes that users make with these machines.
A professional technician will come to your facility with equipment and tools to evaluate and tighten up your system in all the weak spots. If your connectors are loose, the technician will tighten these spots and run a test on the compressor to verify that the leaks have been sealed. If your compressor is losing oil, the technician will diagnose the problem and rectify the situation, whether this involves a new compartment or a new set of fasteners.
Anyone who really knows how to save energy in compressed air systems will stress the importance of choosing the right type of compressor for a given set of applications. If your operations are large and high-volume, you will need a different kind of compressor than the type used by companies that specialize in delicate products and vice versa. In any case, the four main compressor types are defined by the following attributes:
Ash Air has been around in New Zealand since 1979, and weโve grown into a nationwide company with international support and a reputation for quality and reliability.We look after all things compressed air for your business!
Ash Air's range of Chicago Pneumatic, Alup, Pneumatech, and Quincy compressors are used extensively around the world in industries ranging from oil and gas to food, automotive and farming, and we bring you these world class compressors here in the land of the long white cloud.Our technicians are compressed air equipment experts and are dedicated to addressing customer needs. Supported by a 13 locations nationwide, Ash Air offers one of the widest selections of compressed air equipment and parts available today in New Zealand.
With Ash Air compressors, you can count on reliability and high performance for even the most demanding applications. We focus our efforts on the following:
Proportioning the Compressed Air Dryer
Trying to figure out which air dryer capacity is best for you? Here are some factors to consider. Read More…
Maintenance budget: 8 factors to consider
Just like any other equipment, a compressed air installation also requires the necessary maintenance work during its entire lifespan. Even though maintenance costs are only about 5 to 10% of a machine's annual operating costs, failure to budget for maintenance can have potentially disastrous consequences. Read More…
The air dyer is one of the most ignored cooler in the system. A dirty condenser will cause water in the lines, or worse it will cause complete dryer failure. Read More…
Why Replace CO2 with Nitrogen in your Brewery
Using nitrogen is not about fully replacing CO2, but it can reduce their consumption of CO2 by close to 70%. Using nitrogen is about sustainability. Creating your own nitrogen is easy and will reduce the use of a greenhouse gas, which is better for the environment. It will also save you money as early as month one adding that savings to your bottom line. Read More…
What do I need to know about ICONS?
ICONS: Intelligent Connectivity System: The insight into your compressed air system, wherever you are. Learn More about ICONS in this article here! Read More…
A question that is occasionally asked by our customers to Ash Air is 'what is the cost of compressed air?'ย This article looks at the product costs involved with compressed air, as well as minimising the energy cost of compressors and cost allocation. When looking at these factors, we need to realise what causes dropped efficiency of your compressor, leading to increased costs of compressed air. Read More…
How to avoid falling objects when working at heights
You may have great fall protection measures in place to keep employees safe when working at height, but what about their co-workers below? Dropped tools and other falling objects are a major hazard โ and one that isnโt always fully addressed.ย Read More…
Providing a safe working environment for operators is essential, especially when using pneumatic tools and compressed air. If there is a failure in the air network and the hose is not adequately clamped, the resulting whiplash could be devastating. Failure to follow best practice can result in injuries, associated production downtime and decreased productivity. Read More…
Why do I need a dryer for my compressor?
A common questions asked is why do I need an air dryer for my compressor? Typically, air compressors produce water, and although the
water can be drained, there can still be aerosol and vapour droplets that are present. This is because water cannoet be compressed. Water
can damage your compressor by corroding the valves, pipes and machinery controls, which will cost you time and money to resolve. In
the long run, the cost of a new compressor is a small price to pay compared to the loss of production that could potentially arise due
to water damage in your compressor.
Read More…
What are some preventable causes of air compressor failure?
Air compressors can fail for an assortment of different reasons: Normal wear and tear, lifespan and age of the unit, poor maintenance, power surge, install issues are just a few the come to mind. Check out this blog to find out our top 7 tips to ensure your compressor is looked after! Read More…
Simple Ways to Reduce Your Compressed Air Costs?
Air compressors use considerable volumes of energy during a typical work cycle. When you add up all the expenses of operating a facility, any savings can help you boost your bottom line. Read More…
What Should You Know When Buying a Compressor for the First Time?
If you have never bought a rotary screw air compressor before; do the following. Add up the air consumption of all the equipment at your shop. That will be the amount of air your desired compressor should provide. Read More…
How to Know When Your Industrial Air Compressor Needs Servicing
Knowing the telltale signs of wear and tear, understanding your productโs specifications and usability guidelines, and knowing when itโs prudent to call in repairs are skills that could save you a lot of time, effort, and money in the long term. Read More…
One-stage vs Multi-stage Compressor
Find out the difference between a one-stage compressor and a multi-stage compressor. Read More…
How do I winterise my air compressor?
That cold, rainy, and in some places icey New Zealand winter is upon us, and with the following air compressor tips, your air system will be prepared with the preferred temperatures, despite the weather outside. Regardless of whether or not it actually snows or freezes up where you live, most winterisation service recommendations are also basic, solid maintenance procedures that will help extend the life and operational efficiencies of air compressors regardless of whether you live in Queenstown or Northland. Read More…
How to find the better desiccant dryer
The right desiccant dryer with quality desiccant will improve dryer performance and lifetime and will reduce energy and service costs. Read More…
How to Find the Best Air Compressor for Painting Cars
If you're wondering what an air compressor actually is, you've come to the right place. Simply, air compressors convert power in to air that is pressurised which is then used to power air tools such as spray guns. Air compressors are used in a wide range of applications, so naturally if you want one that will be designed for spray painting your vehicle, you want a compressor specifically made for spray guns! This way your compressor will be able to provide the right amount of power to perform the job. Read More…
How to Optimise Compressor Operating Costs
Compressed air plays a fundamental role in industrial activities. Depending on the type of application, the energy cost of producing compressed air can be very high. Below are some tips to save on you compressor bill. Read More…
Upgrading Your Compressor: When is the Right Time?
Air Compressors are essential tools in a variety of industrial settings. No matter what industry you are in having a reliable air compressor can be a crucial part of getting the job done efficiently. However, like an investment, air compressors require upkeep and maintenance, and eventually will need to be upgraded. But how do you know when itโs time to upgrade your air compressor? Here are some things you need to consider. Read More…
Choosing the right assist gas in laser cutting: nitrogen or oxygen
When it comes to laser cutting and other industrial processes, the choice of assist gas is crucial in achieving optimal results. Nitrogen and oxygen are commonly utilized as assist gases, each with its own unique properties and applications. Understanding the characteristics of both gases, will help you to make an informed decision to ensure precision, efficiency, and cost-effectiveness in your operations. Read More…
Controlling your nitrogen purity made easy
On-site nitrogen generators have many benefits over bottled gas. One is that they allow you to select your nitrogen purity. Here is how. Read More…
What are Mobile Compressors used for?
Mobile air compressors are portable, towable compressors particularly useful for applications that suit the construction and roading industry! You'll often see a mobile compressor being used for sandblasting, irrigation blow-outs, and for quarrying tools such as pneumatic block cutters and rock drills.ย ย Read More…
Compressed air so portable it even reaches the moon.
Did you know that Chicago Pneumatic helped man land on the moon? Notice in this photo of the Apollo 11 landing what appear to be "soccer balls" on top of the capsule. They were inflated through a compressor specially developed by Chicago Pneumatic for NASA. Read More…
Where Should I Install my Air Dryer?
Your company purchased an air dryer for your compressor, now where should you install it? One of the most common things we see in the industry are air dryers being stored on top of the compressors. Seems like a wasted space not being used on top of the compressor, right? Wrong. Read More…
When using air compressors, there are many variables that are integral to the quality and effectiveness of your compressed air. When dryer air is necessary, being able to constantly and accurately monitor dew points can be a critical factor to your operation. Read More…
Why Does A Brewery Need Compressed Air?
Compressed air plays an integral role in breweries both large and small around the world. From start to finish, all details in the brewing process are managed in fine detail and having the right air compressor is no exception. Read More…
How is Nitrogen Used in the Coffee Industry?
We Kiwi's love our Coffee! Coffee, like all other food & beverage products, must go through a preservation process to keep the beans fresh during storage and packaging before they reach the consumer. Coffee that is not properly stored after it is roasted will lose a large amount of carbon dioxide, which lessens its' flavor and speeds up the staling process. One of the most common ways to preserve the freshness of coffee is the use of nitrogen gas. Learn more here: Read More…
How Can I Save on Energy Costs by Using a Screw Compressor?
Air compressors are helpful for an enormous range of applications such as air filling, packaging, tools, HVAC control, and more! One possible drawback is the amount of electricity they use; air compressors can be a huge drain on energy if used โinefficiency... Read More…
Which material of pipes should I use for my Air Compressor System?
Air compressors create the energy used by pneumatic tools and processes throughout your compressed air system. The component that connects everything together is the piping. It is very important to choose the right compressed air pipe to avoid pressure loss, rust and other problems. Read More…
Why Do I Need a Back-up Air Compressor?
We get it, buying an air compressor is a big financial decision. And now we are suggesting that you need two air compressors, not just one. Ask yourself one question- Can your business still run if your air compressor goes down? Read More…
Keep It Down โ Air Compressor Noise Reduction
Itโs no secret โ air compressors are excellent sources of energy. Not only do they power essential manufacturing elements and applications, but the heat generated as a result of the compressed air processes can be used as a byproduct that offsets other energy costs. However, thereโs another form of energy that is also a consequence of the air compression process โ sound. Read More…
How can I maximise the performance of my compressor?
Maintenance is key to continuing the performance of your air compressor. Continue to read about maximising the performance and longevity of your compressor and some air compressor maintenance tips! Read More…