Hydrogen production: How is hydrogen made and what is it?

Hydrogen is becoming increasingly important as a promising clean energy carrier – especially with a view to a more climate-friendly future. But have you ever wondered what hydrogen actually is and how it is produced? In this article, we look at the basics and technologies used to produce hydrogen and what makes hydrogen a special element.

Producing hydrogen through technological use

Several technologies for hydrogen production exist, which can be used depending on the specific requirements and available resources. Here are some common methods:
 

 

 

 

Sustainability of hydrogen production: Choosing the right energy source

It should be noted that not all hydrogen production processes are equally sustainable or environmentally friendly. The sustainability of hydrogen production depends on the energy source used and the CO2 emissions during the production process. In order to make the most of the benefits of hydrogen as a clean energy source, it is of great importance to use renewable energy sources for the production of hydrogen.

The use of renewable energies such as solar energy, wind energy or hydropower can significantly reduce CO2 emissions in hydrogen production, making it more sustainable and sustainable. Environmentally friendly hydrogen is produced. This is an important step towards achieving a low-carbon future and tackling climate change.

Hydrogen is also often referred to as the "champagne of the energy transition". But how can we produce hydrogen from renewable energies on a large scale?


Electrolysis is the process that is most promising. The electrolysis process enables the environmentally friendly production of hydrogen, especially if the electricity used for it comes from renewable energy sources. These technologies play an important role in enabling clean hydrogen to emerge as a sustainable energy carrier for various applications. We took a detailed look at the different technologies and took a look at the advantages and disadvantages of each.

PEM electrolysis:

PEM electrolysis, also known as proton exchange membrane electrolysis, splits water into hydrogen and oxygen using a polymer membrane and electric current.

Advantages:

Disadvantages:

Alkaline electrolysis:

In alkaline electrolysis, water is split into its constituents hydrogen and oxygen using an alkaline electrolyte, typically an aqueous solution of potassium hydroxide.

Advantages:

Disadvantages:

SOEC (Solid Oxide Electrolysis Cell):

SOEC stands for Solid Oxide Electrolysis Cell and refers to a high-temperature electrolytic cell that converts water into hydrogen and oxygen at high temperatures and with solid oxides as the electrolyte.

Advantages:

Disadvantages:

AEM electrolysis (Anion Exchange Membrane):

AEM stands for Anion Exchange Membrane and refers to an electrolyzer technology that uses a special membrane that allows permeability to negatively charged ions and splits water into hydrogen and oxygen using electric current.

Advantages:

Disadvantages:

Sourced via atlascopco.com/en group

Do you have an idea for our #expertcorner?Β Let us know!

Who we are and how Ash Air can help your business!

Ash Air has been around in New Zealand since 1979, and we’ve grown into a nationwide company with international support and a reputation for quality and reliability.We look after all things compressed air for your business!

  • Rotary Screw and Piston Air Compressors
  • Vacuum Pumps and Blowers
  • Nitrogen Generation
  • An extensive line of Air Treatment components
  • AIRnet Piping System and  Filtration
  • Mobile Compressors, Generators, and Light Towers

Ash Air's range of Chicago Pneumatic, ALUP, Pneumatech, and Atlas Copco products are used extensively around the world in industries ranging from oil and gas to food, automotive and farming, and we bring you these world-class compressors here in the land of the long white cloud.Our technicians are compressed air equipment experts and are dedicated to addressing customer needs. Supported with nationwide coverage, Ash Air offers one of the widest selections of compressed air, vacuum pump, and industrial gas equipment and parts available today in New Zealand.

Reliability and Efficiency

With Ash Air, you can count on reliability and high performance for even the most demanding applications. We focus our efforts on the following:

  • Increasing uptime
  • Reducing unexpected repairs
  • Reducing energy consumption and meeting our sustainability goals
  • Improving the cleanliness of compressed air


Talk to the team today:  CONTACT US CONTACT US

Read more from our #expertcorner


Just like any other equipment, a compressed air installation also requires the necessary maintenance work during its entire lifespan. Even though maintenance costs are only about 5 to 10% of a machine's annual operating costs, failure to budget for maintenance can have potentially disastrous consequences.


The air dyer is one of the most ignored cooler in the system. A dirty condenser will cause water in the lines, or worse it will cause complete dryer failure.


Using nitrogen is not about fully replacing CO2, but it can reduce their consumption of CO2 by close to 70%. Using nitrogen is about sustainability. Creating your own nitrogen is easy and will reduce the use of a greenhouse gas, which is better for the environment. It will also save you money as early as month one adding that savings to your bottom line.


A question that is occasionally asked by our customers to Ash Air is 'what is the cost of compressed air?'Β  This article looks at the product costs involved with compressed air, as well as minimising the energy cost of compressors and cost allocation. When looking at these factors, we need to realise what causes dropped efficiency of your compressor, leading to increased costs of compressed air.


You may have great fall protection measures in place to keep employees safe when working at height, but what about their co-workers below? Dropped tools and other falling objects are a major hazard – and one that isn’t always fully addressed.Β 


Providing a safe working environment for operators is essential, especially when using pneumatic tools and compressed air. If there is a failure in the air network and the hose is not adequately clamped, the resulting whiplash could be devastating. Failure to follow best practice can result in injuries, associated production downtime and decreased productivity.


A common questions asked is why do I need an air dryer for my compressor? Typically, air compressors produce water, and although the water can be drained, there can still be aerosol and vapour droplets that are present. This is because water cannoet be compressed. Water can damage your compressor by corroding the valves, pipes and machinery controls, which will cost you time and money to resolve. In the long run, the cost of a new compressor is a small price to pay compared to the loss of production that could potentially arise due to water damage in your compressor.






Air compressors can fail for an assortment of different reasons: Normal wear and tear, lifespan and age of the unit, poor maintenance, power surge, install issues are just a few the come to mind. Check out this blog to find out our top 7 tips to ensure your compressor is looked after! 


That cold, rainy, and in some places icey New Zealand winter is upon us, and with the following air compressor tips, your air system will be prepared with the preferred temperatures, despite the weather outside. Regardless of whether or not it actually snows or freezes up where you live, most winterisation service recommendations are also basic, solid maintenance procedures that will help extend the life and operational efficiencies of air compressors regardless of whether you live in Queenstown or Northland.